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Simulations in Support of Sandia’s Z-
facility

Marx generators 
11.4 MJ/1 µs

Hundreds of 
micron-radius 
wires

Magnetically 
propelled flyer 
plates
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Arbitrary Lagrangian-Eulerian 
(ALE) sequence for ALEGRA-MHD

• 2D and 3D multiple material ALE based on unstructured 
mesh hex and quad finite elements.

• Lagrangian Steps (Operator split)
– Compute forces and accelerations
– Move nodes (magnetic fluxes or magnetic potential circulations are 

invariant)
– Implicit magnetic diffusion (eddy currents) and Joule heating, 

energy transfer through boundary. Vacuum is approximated with a 
very small conductivity.

• Remesh - Chose a close new mesh
• Remap Step

– compute new values at element centers, nodes, faces and edges. 
Constrained transport for face centered fluxes.
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Invariants of motion in ideal
Lagrangian MHD

• Conservation of Magnetic Flux
• Faraday’s Law
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• Magnetic flux and vector potential circulation are invariants in ideal MHD.  This 

leads to a natural operator split for Faraday’s law.  Move the nodes assuming a 
constant flux,  then solve a standard diffusion equation at the new location. The 
term in red below is zero by algorithmic construction.
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Transient magnetics (eddy current) 
equations solved using edge/face FE
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Ω = a single conducting region in ℜ3.
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Magnetics Numerical Algorithm

•Extreme variations (~106-108) in 
material properties & spatial scale pose 
considerable difficulty for magnetic 
field solution
•Edge-based discretization required.
•Multilevel matrix solver designed 
specifically for curl curl operator

Nodal Formulation Result      
(poor current distribution)

Edge Formulation Result 
(accurate current distribution)

Current runs 
through vacuum.

Current runs 
through can.Current 

streamlines.
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H(curl) AMG
• Algebraic multigrid (AMG) iteratively solves Ax = b

scalably by accelerating solve with “coarse grid” matrices
– Interpolation & restriction operators move information between 

grids
» Rk = Ik

T

» Ak-1 = Rk-1 Ak Ik-1  ( Galerkin coarsening)

– Smoother:  simple solver reduces high energy error on each level
– Coarse grid correction: reduces low energy error

• H(curl): discrete gradients are null space of discrete curl
fi (near) null space dimension is large (≈ grid nodes)

• Smoother: distributed relaxation (Hiptmair, Brandt)
– 1) Sweep over Ax=b, 2) project residual into near null space & 

sweep over projected system, 3) project back & update solution 
– Chebyshev polynomial smoothing is used in both sweeps and gives 

parallel independence since kernels are matrix-vector operations.

Comple-
mentary
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Prolongator
(edge) Pe

Prolongator
(nodal) Pn

Coarse Grid Correction

ThPn=PeTH

If ShTh = 0 and SH = Pe
TShPe, then ThPn=PeTH ⇒ SHTH = 0,

i.e., curl/grad relationship holds on coarser level H.

Coarse level
Null(curl)

nodal basis

TH

edge basis

Nodal FE space Edge FE space

Fine level
Null(curl)

nodal basis

discrete grad Th

edge basis
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h-independence in Model Problems

CG,   W(1,1) cycle,    ||r||T  / ||r0||T  ≤ 10-8

3D Cube, σ = 10-3

Pe (β ≠ 0)
Pe  (β=0)
Pe

2D Box, σ = 10-3

Pe (β ≠ 0)
Pe  (β=0)
Pe

1.15 in 2D
complexity  

1.11 in 3D


≤ 

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3D Circuit Equation Coupling 
Algorithm

• External circuit and mesh need to be able to be coupled.  
• Coupling in 3D ALEGRA-MHD is based on generating an 

equivalent circuit element using the weak form of the 
diffusion equation in the form of an energy equation.

• Current is linear in the boundary conditions.  Generate 
two solutions leading to a parameterized solution as a 
function of the current at the end of the time step.

• Fit to a lumped circuit element by choosing an L and an R 
to match the instantaneous inductance and the energy 
transfer to/from the mesh.

• Solve the external lumped element circuit equation to 
obtain a new I.

• The new field is then a linear combination of the two 
solutions.
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• Match the volume integrals associated with the discrete 
Poynting flux with a circuit representation.

• Evaluate in orders of δI

• Energy error will appear at O((δI)2).  However, choose the 
resistance so that discrete energy is conserved for a linear 
current.

Mesh element representation.
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The remap step

• The Lagrangian step maintains the discrete 
divergence free property via flux updates given 
only in term of curls of edge centered circulations. 

• The remap should not destroy this property of the 
magnetic field representation.

• Constrained transport (CT) developed by Evans 
and Hawley is the prototype algorithm for 
advection consistent with the divergence free 
constraint.
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CT on unstructured quad 
and hex grids (CCT)

• Electric field updates are 
evaluated by computing an 
approximation to the flux 
through the upwind 
characteristic (green dot 
quadrature point).

• Take curl to get updated fluxes.
• Requires tracking flux and 

circulation sign conventions.
• High order methods use more 

information that just the donor 
fluxes shown.

t∆v 1
DΦ

2
DΦ

Upwind 
element1

D BΦ 1
BΦ

1
AΦ

2
DBΦ

2
AΦ

2
BΦ

0x

1x

2x

3x

• Evans and Hawley CT uses flux information on blue and red faces on a 
Cartesian grid.
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Face element representation
• Need representation of upwind element in terms of the reference 

coordinates of a linear element.
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• Integrate over flux surface.
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• Face normal gradient terms appear.  These do not 
appear with EH CT.
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Characteristic constrained transport 
(CCT) 

• We now have a representation for the edge magnetic flux contribution.
• Compute                      to first order,δξ δη

t∆v

δξ
δη

1 0 3 0( ) ( )t δξ δη− ∆ = − + −v x x x x

• For unstructured grids a type of cross face tangential gradient limiting 
analogous to ALEGRA geometry independent volumetric limiting was
implemented.

• This cross face reconstruction mimics the EH ideas for Cartesian grids
• Several limiters have been implemented (Van Leer, harmonic, minmod, 

donor)

1 1 1 2 1 1
2( ) ( ) ( )D DA sη ηΦ = Φ + −

)

• There is no natural variation tangential to the face.  
Need high order reconstruction in this direction.

2 2 2 2 2 1
2( ) ( ) ( )D DA sξ ξΦ = Φ + −

)
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CT 1D advection
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EH-CT
• 25x25 cartesian mesh - harmonic limiting

zA

zA

zA
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CCT on Cartesian grid
• EXCELLENT RESULTS- diagonal, slant or grid aligned

zA

zA
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CCT on distorted or unstructured  grids

zA

zA

• ACCURATE limited gradients in the cross face 
direction are required in the general grid case. 
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Improved CCT Algorithm
• Compute B at nodes from the face element 

representation at element centers. This must 
be second order accurate.  Patch recovery 
(PR) suggested.

• Compute trial cross face element flux 
coefficients on each face using these nodal B. 

• Limit on each face to obtain cross face flux 
coefficients which contribute zero total flux.

• Compute the edge flux contributions in the 
upwind element by a midpoint integration rule 
at the center of the edge centered motion 
vector. (green line).

• Note:  The current face based 3D algorithm 
does not take into account variations of the 
fluxes in the upwind edge direction but is 
naturally included here.  

• Work is in progress.

t∆v

Upwind element

• CRITICAL QUESTION:      
What is the best procedure to 
compute an accurate B at the 
nodes from an arbitrary patch 
of low order face elements? Is 
it provably accurate?



•Page 22

Patch Recovery Based CCT

Cartesian Paved Randomized

x

diag

Paved,diagonal, 
face based,
harmonic

Paved,diagonal, 
patch recovery,

harmonic
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Algorithmic Summary
• Vector finite elements for representing the 

magnetics is a natural match for developing a 
resistive MHD ALE algorithm.

• AMG methodologies are being implemented with 
considerable success for the diffusion solve.

• Constrained transport algorithms can be built in 
a natural way based on face element 
representations.

• The approach described provides a robust 
foundation for meeting the challenges of 3D Z-
pinch MHD modeling.

• Future activities/needs: improved CCT, tensor 
thermal and magnetic transport coefficients, 
better time step controls, h-adaptivity
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Physical Insight Into Observed 
Phenomenon

• Axially-varying streams of pre-cursor material from wires 
observed at early time. 

Details:
- Finite spacing 
between the streams 
of ablated mass.
- Flow is nearly 
orthogonal to wire.

Image supplied by Sergey Lebedev, Imperial College Image supplied by Dave Bliss & Gennady Sarkisov, 
Sandia National Laboratories
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Sinusoidal Core Perturbation

Volume fraction isosurface (elements 70% filled) with magnetic field strength coloring



•Page 26

Valuable Physical Insight

Wire ablation 
dynamics 
governed by 
interplay 
between global 
& local 
magnetic 
fields.

Magnetic stream ribbonsVelocity vectors

Local field 
pinch

Global field 
acceleration
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Observed/Simulated Phenomenon
• Axially-varying streams of pre-cursor 
material from wires observed at early 
time. 

Details:
- Finite spacing between the 
streams of ablated mass.
- Flow is orthogonal to wire.

Image supplied by Sergey Lebedev, Imperial CollegeVolume rendering of 30-wire sinusoidal perturbation simulation 
(density used as “opacity”); image generated using TNTvol
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Application Summary

• Significant MHD algorithmic advances 
provide unique 3D HEDP simulation 
capability for Z-pinch environments.

• Present: Gaining new insight into Z-pinch 
dynamics & understanding of wire 
ablation and pinch physics.

• Goal: Utilize simulations to guide 
experimental program & assist with new 
machine acquisition.
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Buneman Animation Contribution
These slides contain representative information from the MPEG movie generated

8-wire 3D 
calculation with time 
sequence and image 
rotations
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Buneman Animation Contribution (2)
These slides contain representative information from the MPEG movie generated

Image rotations



Buneman Still Image Competition Submission 
“Physical Insight Into Non-Uniform Wire Array Ablation” 

Christopher Garasi & Allen Robinson 
Sandia National Laboratoriesa 

 
The Figure contains multiple visualizations to assist in the understanding of non-uniform wire array 

ablation seen in experimental images. The two left-most images are schlieren images of wire arrays on the 
MAGPIE accelerator (Imperial College) and the Z machine (Sandia National Labs). These images clearly 
display low density ablation of wire material traveling to the center of the wire array. This material ablates non-
uniformly along the length of each wire with a nearly uniform wavelength of perturbation. The visualizations in 
the Figure help to understand the physics which maintains this type of ablation. 

The upper central image shows results from a 3D ALEGRA-HEDP (high energy density physics) 
simulation of a wire in a 30-wire periodic array. The material boundaries are represented as a translucent 
isosurface color shaded with the magnitude of the current density (J). Current density streamlines also are 
illustrated in order to visualize the direction of the current flowing through the wires. Although the majority of 
the current is flowing through the wire core, some current is advected with the low density material ablated 
from the wire.  

The right-most image also displays current density streamlines as well as a translucent isosurface of the 
maximum magnetic pressure. Velocity vectors (V) have been added in order to show the magnitude and 
direction of the ablated material flow. Regions of increased magnetic pressure squeeze the wire material due to 
enhanced local magnetic field. This causes material to travel along the wire until it reaches an area where the 
global magnetic field of the array dominates. The global field causes the ablated material to travel radially 
inward due to magnetic forces. The simulation was initialized with a random wire surface perturbation which 
causes areas with increased local magnetic field versus global field to develop.  

The final image in the lower center focuses on a portion of the wire and illustrates the magnetic field (B) 
topology using magnetic field stream ribbons. Current density streamlines provide continuity between all the 
visualizations as a point of reference. An additional technique involving the visualization of vortex cores 
derived from the magnetic field was used to illustrate the interaction between the flow and the magnetic field 
topology. Vortex cores for the initial magnetic field distribution would connect the nulls of the field through the 
center of the wire. As the non-uniform flow establishes itself, the magnetic field is advected toward axis non-
uniformly, causing increased magnetic tension. The line representing the connectivity of the vortex cores 
illustrates how the field uniformity in the z-direction has been altered due to advection at various distance along 
the wire. The vortex core line, which was initially straight and continuous, has broken as a result of the 
advection of the field due to mass ablation while the regions with increased local field have remained about the 
wire. 

In conclusion, this Figure uses visualization of scientific quantities in order to help our understanding of 
the mechanism which maintains the wire ablation pattern seen in experimental images. Although the source of 
the initial perturbation is not well understood at this point in time (and might not even be an MHD effect), it is 
the variation in the strength of the local and global magnetic field about each wire in the array which establishes 
this steady flow of ablated material. The ablated material does carry a small fraction of the current toward the 
array center, however the majority of the current still runs in the wires. Additionally, the current carrying 
material also advects magnetic field toward the center of the array causing increased magnetic tension with 
those regions about the wire where the topology has not changed. Eventually, the array loses enough mass and 
magnetic forces are strong enough to cause the array to collapse onto this pre-fill material. 

 
a Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States 
Department of Energy’s National Nuclear Security Administration  under contract DE-AC04-94AL85000. 


